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Ferroelectric liquid crystals (FLC) have generated a considerable

amount of research activity over the past 25 years, ranging from .
fundamental studies of the molecular origins of spontaneous polar +Ps | P _ 0

ordering in the SmC* phase to the commercial development of high- SN 1/ /. swieh

resolution reflective FLC microdisplays.The ferroelectric SmC* -'I'f:'uuu/ W}

phase is a chiral liquid crystal phase characterized by a spontaneous
electric polarization®s) which can be coupled to an electric field
to produce an electrooptical light shutbein the past 10 years, a  Figure 1. Photoswitching of a ferroelectric SmC* liquid crystal film via
growing interest in photonic liquid crystal materials has led a Zﬁ dSig” drngsci?rré ;';:lz TSL%;n?Q%';%d at::(i:)vgget%ewﬁr#o?ézjvgggf isslideS.
number of resear.ch groups to |nvest|ga'te optical switching mech- perpendicular to the plane of the page. ’

anisms for FLC light shutters (photoswitch) based on the photo-

modulation ofPs.4~® Such photoswitching mechanisms may allow
one to record images and write diffraction gratings on bistable FLC
films on the time scale of a few microseconds.

+ Ps

polar couplingis essential to the photomodulation®{ because it
imparts conformational asymmetry to the thioindigo core. Without
stereo-polar coupling, i.e., when X H, the thioindigo core does
not contribute to the spontaneous polarization and the effect of
o (C6H13 trans-cis photoisomerization oRs is negligible®

X S 0 A potentially useful FLC photoswitching mechanism which has
ox yet to be fully exploited is the photoinduced sign inversiorPef

. 0 (Figure 1). This concept was first demonstrated in a SmC host using
CeHis™ ™ 4 xno,: 2, X=Cl the thioindigo dopan® in combination with a photoinert chiral
dopant which induces a spontaneous polarization of opposité'sign.
More recently, Komitov and co-workers reported a photoinversion

0 F
O.N s o CsHi . . . - .
O _ O of Psvia the trans-cis photoisomerization of an achiral azobenzene
o S F dopant in a chiral SmC* host which undergoes an inversioRsof
\ -]

“

o ., as a function of temperatufeln this Communication, we report
s the first example of FLC photoswitching based on a photoinduced
) . sign inversion of the polarization power of a single chiral dogant.
Let us consider two'coptrastlng approachgs to photomodulate 1piq is achieved without concomitant destabilization of the SmC*
the spontapeous polarization of a fgrroelectrlc SmC* phase. Ope phase using an “ambidextrous” thioindigo dopaB)twith compet-
approach IS based on the ch’an.ge n molecular shape of a_Ch'raIing chiral side chains that induce spontaneous polarizations of
photochromic dopants such as'4dsubstituted azobenzenes, which opposite sign&® The R)-2-octyloxy side chain is sterically coupled

o OPaIls SU o ) " > sign : | _ : d
do not contribute intrinsically t®s.**"'In a ferroelectric SmC to the thioindigo core via the nitro substituent and induces a positive

host, the tran‘s.cis photoisomerization of an achirgl azobenzeng P11 whereas theR R)-2,3-difluorooctyloxy side chain is decoupled
dopant destabilizes the SmC* phase (photomechanical effect), Wh'Chfrom the core and induces a negatRe!? With this new design,

_results in adecreaseB_gat constant temperature. Anoth(_ar approach the increase in transverse dipole moment of the thioindigo core
is based on the photoinduced change in transverse dipole momen[Jpon trans-cis photoisomerization raises the polarization power

of a chiral photochromic dopant which maintains a rodlike shape of the coupled 2-octyloxy/thioindigo unit above that of the 2,3-
in both photoisomeric formsIn an achiral, non-ferroelectric SmC difluorooctyloxy unit and inverts the net sign Bt

host, the chiral photochromic dopant induces a spontaneous 1pq dopanB was obtained by alkylation of the known compound
polarization, and its photoisomerization causes a changesin (R)-6'-hydroxy-5-nitro-6-(2-octyloxy)thioindigh with (R,R)-2,3-
without concomitant destabilization of the induced SmC* phase. difluorooct-1-yl tosylate, which was supplied by Displaytech, ¥hc.
Examples of such dopants include the chiral thioindigj@nd 2, A 1.0 mol % mixture of dopanB in the SmC host £)-4-(4-
which undergo transcis_photoisomerization in the visible range  ethylhexyloxy)phenyl 4-decyloxybenzoaRh@)!S was introduced
of thg spectlrunj. The increase P pbserved upon traﬁ$|s. in a polyimide-coated ITO glass cell with a;4n spacing and
phot0|somer_|zat|on ofl and 2 is a_ttr_lbu_ted to the Increase n aligned by slow cooling from the isotropic liquid phase to the SmC*
transverse dipole moment of the thioindigo core, which is strongly phase. The spontaneous polarization of the FLC film was measured
couple_d to the_chiral 2-octyloxy Sid? chaing via interactions with as a function of temperature with the film shielded with a red cutoff
the adjacent nitro and chloro substituehfhis so-calledstereo- filter (i.e., in the dark), and under constant irradiation with visible
* Queen’s University. light at A = 510 and 450 nm using a 450-W high-pressure Xe arc
* Displaytech Inc. lamp fitted with interference filters (Figure 29.The sign ofPs
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Figure 2. (a) Spontaneous polarizati®®s as a function of temperatuie

for the 1 mol % mixture oBin PhB kept in the dark®) and under constant
irradiation atl = 510 @) and 450 nm[{). (b) UV—vis absorption spectra

of a 104 M solution of 3 in benzene after irradiation at= 510 (dashed
line) and 450 nm (heavy line) and after the solution was left to stand in the
dark for 24 h (fine line).

induced bytrans-3 was determined to be negative on the basis of
the relative configuration of the electric field and the switching
position of the sampl& which indicates that the polarization power
of the 2,3-difluorooctyloxy unit predominates in the trans form.
Trans-cis photoisomerization @ by irradiation of the FLC film

at 510 nm causes a sign inversionRef from —1.3 to+0.66 nC/
cn? at 10 K below the SmA*=SmC* transition temperaturd (),
which indicates that the polarization power of the coupled 2-
octyloxy/thioindigo core unit predominates in the cis forhihe
increase in absorbance of the FLC film at 450 nm (cis isomer)
upon irradiation at 510 nm is only 5% of that observed in dilute
isotropic solution (inset, Figure 2), which is consistent with previous
studies of 6,6dialkoxythioindigo photoisomerization in other
organized multilayer assembli&s.Irradiation of a 4.0 mol %
mixture of 3 in PhB at 510 nm does not invert the sign Bf and
results in a smaller modulation & in relative terms, from-6.8

to —2.6 nC/cm at T — Tc = —10 K. These results are consistent
with previous observatiofdwhich suggest that trangis photo-
isomerization is gradually suppressed with increasing concentration
of dopant as a result of aggregate formafidn.

The polarization inversion can be reversed by irradiation at 450
nm, which should give a trans-enriched photostationary state.
Complete reversion to the original polarization state is achieved
by thermal cis-trans isomerization after the solution is left to stand
in the dark for ca. 60 s. ThBs vs T plots show that the SmC*
SmA* transition temperature @&s = 0 does not change upon
photoisomerization of3, which suggests that the polarization
photoinversion is achieved without a photomechanical effect. To
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